ภาพหัว

ภาพหัว

วันศุกร์ที่ 8 เมษายน พ.ศ. 2559

เนื้อหา ฟิสิกส์อะตอม


อะตอมและการค้นพบอิเล็กตรอน

  อะตอม
               มนุษย์เริ่มสนใจโครงสร้างของสสาร โดยการสังเกตสิ่งต่างๆ ในธรรมชาติและพบว่ามีสมบัติแตกต่างกันหลากหลาย คือ มีทั้งที่เป็นของแข็ง ของเหลว และแก๊ส จึงสงสัยต่อไปว่าสิ่งเหล่านี้ประกอบด้วยชิ้นสวนย่อยอย่างไร นำไปสู่ความคิดที่ว่าสสารมีชิ้นส่วนย่อยเล็กที่สุดที่เรียกว่าอะตอม เมื่อถึงสมัยของดอลตัน สมมติฐานเกี่ยวกับอะตอมมีความชัดเจนขึ้น
ทฤษฎีอะตอมของดอลตันกล่าวว่า
สารทุกชนิดประกอบด้วยอะตอมซึ่งเป็นสิ่งที่แบ่งแยกไม่ได้ และธาตุแต่ละชนิดประกอบด้วยอะตอมที่มีสมบัติ
เหมือนกันทั้งน้ำหนัก และขนาด อะตอมของธาตุต่างชนิดกันจะมีน้ำหนักต่างกัน และอะตอมชนิดหนึ่งไม่สามารถเปลี่ยนไปเป็นอะตอมชนิดอื่นได้ แต่อาจรวมกับอะตอมของธาตุอื่นในสัดส่วนที่คงตัว ทำให้เกิดสารประกอบอะตอมที่ยังคงลักษณะเฉพาะของมันขณะเกิดปฏิกิริยาเคมี

              การค้นพบอิเล็กตรอน
             การศึกษาการนำกระแสไฟฟ้าในแก๊สที่มีความดันต่ำได้รับการพัฒนาอย่างต่อเนื่อง ในปี พ.ศ. 2398 ได้มีการสร้างเครื่องสูบสุญญากาศขึ้น และสิ่งประดิษฐ์นี้นำนักวิทยาศาสตร์ไปสู่การพบอิเล็กตรอนในที่สุด เมื่อมีการบรรจุแก๊สความดันต่ำเข้าไปในหลอดแล้วต่อขั้วไฟฟ้ากับแหล่งกำเนิดไฟฟ้าที่มีความต่างศัยก์ไฟฟ้าสูง ดังรูป พบว่าบริเวณผนังของหลอดจะเรืองแสงเป็นสีเขียวจางๆ

                                                            รูป วงจรไฟฟ้าหลอดรังสีแคโทด                                       
                ต่อมาในปี พ.ศ. 2408 เซอร์ วิลเลียม ครูกส์ ทำการทดลองกับหลอดสุญญากาศเช่นกัน แต่ดัดงอหลอดเป็นมุมฉาก ดังรูป 19.1 ข แล้วต่อขั้วไฟฟ้าของหลอดที่บรรจุแก๊สความดันต่ำนี้เข้ากับแหล่งกำเนิดไฟฟ้าที่มีความต่างศักย์ไฟฟ้าสูง พบว่าการเรืองแสงสีเขียวจะเกิดมากที่สุดตามบริเวณผนังหลอดด้านในที่อยู่ตรงข้ามขั้วแคโทดซึ่งเป็นขั้วลบแสดงว่าการเรืองแสงดังกล่าวเกิดจากรังสีที่ออกมาจากขั้วแคโทด จึงเรียกรังสีนี้ว่า รังสีแคโทด (cathode ray )   ในเวลาต่อมาได้มีการศึกษาธรรมชาติของรังสีแคโทด โดยใช้แผ่นโลหะบางๆ กั้นรังสีแคโทด ทำให้เกิดเงาของแผ่นโลหะปรากฏบนผนังหลอดดังรูปและเมื่อให้รังสีแคโทดผ่านสนามแม่เหล็กและสนามไฟฟ้าพบว่า รังสีนี้มีการเปลี่ยนแปลงในบริเวณที่มีสนามทั้งสอง



รูปแสดงเงาที่เกิดจากรังสีแคโทด


   การค้นพบอิเล็กตรอนโดยการทดลองของทอมสัน
               พ.ศ. 2440 เมื่อ เจ เจ ทอมสันทดลองใช้หลอดสุญญากาศลักษณะคล้ายหลอดและมีแผนภาพดังรูปโดยมี Cเป็นขั้วแคโทด A เป็นขั้วแอโนด P และ Q เป็นแผ่นโลหะขนาน



เมื่อต่อขั้วแคโทดและขั้วแอโนดกับแหล่งกำเนิดไฟฟ้าที่มีความศักย์สูง รังสีแคโทดจะออกจากขั้วแคโทด C ไปยังขั้วแอโนด A ส่วนที่ผ่านช่องเล็กๆของทรงกระบอก  A และ D เป็นลำของอนุภาคตรงไปกระทบสารเรืองแสงซึ่งฉาบไว้ที่ปลายอีกข้างหนึ่งของหลอด ทำให้เกิดจุดสว่างเล็กๆ S และเมื่อต่อแผ่นโลหะ P และ Q กับขั้วแบตเตอรี่ พบว่า จุดสว่าง S จะเลื่อนไปจากตำแหน่งเดิม
                - ถ้าต่อแผ่นโลหะ P กับขั้วลบ และแผ่นโลหะ Q กับขั้วบวก พบว่าจุดสว่าง S เลื่อนไปทาง Q จะสรุปเหตุการณ์ที่เห็นอย่างไร
ข้อสังเกตที่ได้จากการทดลอง ทำให้ทอมสันสามารถสรุปได้ว่า รังสีแคโทดเป็นลำอนุภาคที่มีประจุไฟฟ้าลบ

จึงเรียกอนุภาคดังกล่าวว่า อนุภาครังสีแคโทด(cathode ray particle)นอกจากนี้ ทอมสันยังทดลองวัดอัตราส่วนประจุไฟฟ้าต่อมวล (q/m)  ของอนุภาคนี้อีกด้วย
                - ถ้าบริเวณระหว่างแผ่นโลหะ P และ Q มีเฉพาะสนามแม่เหล็กเท่านั้นและทิศของสนามอยู่ในแนวตั้งฉากและพุ่งเข้าหาแผ่นกระดาษ จุดสว่าง S จะเลื่อนไปทางใด
เมื่ออนุภาครังสีแคโทดเคลื่อนที่เข้าไปในบริเวณระหว่างแผ่นโลหะ P และ Q ขณะที่มีสนามแม่เหล็ก สนามแม่เหล็กจะส่งแรงกระทำต่ออนุภาค ทำให้แนวการเคลื่อนที่เบนเป็นส่วนโค้งของวงกลม แต่เมื่ออนุภาครังสีแคโทดผ่านพ้นบริเวณที่มีสนามแม่เหล็ก มันจะเคลื่อนที่ในแนวเส้นตรงพุ่งไปกระทบฉากเรืองแสง ดังรูป
 รูป 19.6 แนวทางการเคลื่อนที่ของอนุภาครังสีแคโทดเมื่อผ่านบริเวณที่มีสนามแม่เหล็ก

สมมติให้อนุภาครังสีแคโทดมีมวล m ประจุไฟฟ้า q และเคลื่อนที่ในแนวเส้นตรง ด้วยความเร็ว v ในบริเวณที่มีสนามแม่เหล็กขนาด B แนวทางการเคลื่อนที่ของอนุภาคจะถูกเบี่ยงเบนเป็นส่วนโค้งของวงกลมที่มีรัศมี R โดยแรงเนื่องจากสนามแม่เหล็กFB เป็นแรงสู่ศูนย์กลางFc  ดังรูป 19.6 ข
                 เนื่องจาก F = qvB  และ   Fc = mv/R
                ดังนั้น qvB= mv/R
               นั่นคือ q/m=v/BR                                
       เพราะ B และ R เป็นปริมาณที่สามารถวัดได้ ส่วน v นั้นทอมสันได้ทำการทดลองวัดโดยปรับขนาดและทิศของสนามไฟฟ้าและสนามแม่เหล็กให้พอเหมาะ จนกระทั่งลำอนุภาครังสีแคโทดไม่เบนไปจากแนวเดิม ซึ่งแสดงว่าแรงเนื่องจากสนามทั้งสองที่กระทำต่ออนุภาครังสีแคโทดมีขนาดเท่ากันแลแรงทั้งสองมีทิศทางตรงข้ามกัน

               นั่นคือ  FE=FB
                               qE = qvB
                      ดังนั้น  V=E/B
              ในสมการสนามไฟฟ้า เป็นปริมาณที่วัดได้ เมื่อแทนค่า ในสมการจะคำนวณหาอัตราส่วนq/mได้
ทอมสันได้ทดลองวัด
 q/mซ้ำหลายครั้งโดยเปลี่ยนชนิดของโลหะที่ใช้ทำขั้วแคโทด ปรากฏว่าอัตราส่วนของอนุภาครังสีแคโทดที่คำนวณได้จากการทดลองมีค่าโดยประมาณเท่ากันคือ 1.76x1011 คูลอมบ์ต่อกิโลกรัม เขาจึงสรุปว่า รังสีแคโทดที่พุ่งออกจากโลหะทั้งหลายเป็นอนุภาคที่มีมวลและเป็นอนุภาคชนิดเดียวกัน ซึ่งต่อมาได้ชื่อว่า อิเล็กตรอน(electron) จึงถือว่าทอมสันเป็นนักวิทยาศาสตร์ที่ค้นพบอิเล็กตรอน
                นอกจากนี้ทอมสันได้ทดลองวัดอัตราส่วนอัตราส่วนq/m ของไอออนของไฮโดรเจน ซึ่งเป็นอะตอมของไฮโดรเจนที่สูญเสียอิเล็กตรอนไป ดังนั้นประจุไฟฟ้าของไอออนไฮโดรเจนจึงเป็นบวก ทอมสันพบว่า อัตราส่วนq/m ของไอออนไฮโดรเจนที่มีค่าโดยประมาณเท่ากับ9.7x107คูลอมบ์ต่อกิโลกรัม ซึ่งค่าที่ได้นี้สอดคล้องกับ q/mที่ได้จากการแยกสลายด้วยไฟฟ้าของฟาราเลย์
 ปัจจุบันเป็นที่ทราบกันดีว่า ประจุของอิเล็กตรอนกับประจุของไอออนของไฮโดรเจนมีค่าเท่ากัน ดังนั้นเป็นการเปรียบเทียบค่า  1.76x1011  ของอนุภาคทั้งสองทำให้รู้ว่า ไอออนของไฮโดรเจนมีมวลมากกว่าอิเล็กตรอนประมาณ 1800 เท่า
                ผลการทดลองของทอมสันแสดงให้เห็นว่า ขั้วไฟฟ้าลบที่ทำจากโลหะทุกชนิดสามารถให้อิเล็กตรอนได้ ทอมสันจึงสรุปว่าอะตอมซึ่งแต่เดิมเข้าใจกันว่าแบ่งย่อยไม่ได้นั้น ความจริงสามารถแบ่งย่อยไปได้อีก และอิเล็กตรอนคือองค์ประกอบหนึ่งของอะตอมทุกชนิด
 ในการทดลองเพื่อหาอัตราส่วนq/mของอนุภาครังสีแคโทดตามแบบของทอมสัน เมื่อใช้สนามแม่เหล็กที่มีขนาด 0.004 เทสลา พบว่ารัศมีความโค้งของลำอนุภาครังสีแคโทดเท่ากับ 4.2 เซนติเมตร ในการวัดอัตราเร็วของอนุภาครังสีแคโทดพบว่า เมื่อต่อความต่างศักย์ 480 โวลต์เข้ากับแผ่นโลหะที่อยู่ห่างกัน 4.0 มิลลิเมตร สนามไฟฟ้าที่เกิดตั้งฉากกับสนามแม่เหล็ก จะทำให้อนุภาครังสีแคโทดเคลื่อนที่เป็นเส้นตรง จงหาอัตราเร็วและอัตราส่วนq/mของอนุภาครังสีแคโทด

วิธีทำ     ก. การหาอัตราเร็วอนุภาครังสีแคโทด
การปรับสนามไฟฟ้าและสนามแม่เหล็กที่พอเหมาะจะทำให้รังสีแคโทดเคลื่อนที่เป็นเส้นตรง
                                                                    FB  =FE
                                                                   qvB =     qE
                                                   
ดังนั้น  V=E/B                (1)
                                               
เนื่องจาก  E=V/d                (2)
              
แทน (2) ลงใน (1) dV=V/Bd
              
แทนค่า  V=480v/o.oo4t x o.oo4m=3 x 107     

ตอบ     อัตราเร็วของอิเล็กตรอนเท่ากับ3 x 10
             
อัตราส่วนระหว่างประจุต่อมวลเท่ากับ 1.79 x1011  

                 การหาประจุไฟฟ้าของอิเล็กตรอนโดยการทดลองของมิลลิแกน  
 การทดลองของทอมสัน ทำให้รู้อัตราส่วนระหว่างประจุต่อมวลของอิเล็กตรอน แต่ยังไม่สามารถรู้ขนาดของประจุไฟฟ้าและขนาดของมวลอิเล็กตรอนได้ จนกระทั่งนักฟิสิกส์ชาวอเมริกันชื่อโรเบิร์ต เอ มิลลิแกน ได้ทดลองวัดค่าประจุไฟฟ้าของอิเล็กตรอนได้สำเร็จ โดยการวัดประจุบนหยดน้ำมัน
                ส่วนประกอบที่สำคัญคือแผ่นโลหะ A และ B ที่ขนานกัน และอยู่ห่างกันเป็นระยะ d แผ่น A ถูกเจาะเป็นรูเล็กๆ เหนือแผ่น A มีกระบอกฉีดน้ำมันซึ่งปากกระบอกเป็นรูเล็กมาก เมื่อฉีดละอองของหยดน้ำมันขนาดเล็กเข้าไปในระหว่างแผ่นโลหะขนาน แล้วฉายรังสีเอกซ์ จะทำให้อากาศแตกตัว มีประจุไฟฟ้าไปเกาะบนหยดน้ำมัน จากนั้นปรับค่าความต่างศักย์ไฟฟ้า หยอดน้ำมันที่มีประจุไฟฟ้าจะเคลื่อนที่ขึ้นลงด้วยอัตราเร็วต่างๆ ในสนามไฟฟ้า แต่เมื่อต่อขั้วไฟฟ้าบวกกับแผ่นโลหะ A และต่อขั้วไฟฟ้าลบกับแผ่นโลหะ B จะพบว่า หยดน้ำมันบางหยดจะเคลื่อนที่ช้าลง บางหยดเคลื่อนที่เร็วขึ้น


หยดน้ำมันที่เคลื่อนที่ขึ้น มีประจุไฟฟ้าชนิดใด
                - ถ้าต้องการให้หยดน้ำมันที่กำลังเคลื่อนที่ขึ้นหยุดนิ่งจะต้องทำอย่างไร
                 เมื่อเราปรับความต่างศักย์ไฟฟ้าได้อย่างพอเหมาะ จะมีหยดน้ำบางหยดลอยนิ่งอยู่กับที่ หรือเคลื่อนที่ด้วยอัตราเร็วคงตัว ถ้าไม่คำนึงถึงแรงลอยตัว ถือได้ว่าแรงเนื่องจากสนามไฟฟ้ากับแรงโน้มถ่วงของโลกที่กระทำต่อหยดน้ำมันสมดุลกันพอดี
หยดน้ำมันมวล m มีประจุไฟฟ้า q จะได้ว่า
 qE           =              mg                          
              หรือ q=mg/E     (19.3)คือขนาดความเข้มสนามไฟฟ้า


แบบจำลองอะตอม

แบบจำลองอะตอมของทอมสัน
ในปลายคริสต์ศตวรรษที่ 19 ได้มีการค้นพบรังสีชนิดหนึ่ง ซึ่งเรียกว่า รังสีแคโทด (cathode ray) ที่ได้จากการทดลองของนักวิทยาศาสตร์ชื่อ Julius Plickerซึ่งใช้หลอดแก้วที่สูบอากาศออก และมีอิเล็กโตรด อันอยู่คนละข้าง (แอโนดเป็นขั้วไฟฟ้าบวก และแคโทดเป็นขั้วไฟฟ้าลบ) ของหลอดแก้ว และต่อไปยังไฟฟ้าที่มีศักย์สูง ทำให้เกิดรังสีขึ้นภายในหลอดแก้ว เรียกว่า รังสีแคโทด




                             
และในปี 1897 ได้มีผู้ทำการทดลองเกี่ยวกับรังสีแคโทดนี้ โดยค้นพบว่ามีอนุภาคที่มีประจุไฟฟ้าลบ ซึ่งต่อมาเรียกว่า "อิเล็กตรอน" จากรังสีแคโทด เขาผู้นี้คือ เซอร์โจเซฟ จอห์น ทอมสัน ( Sir Joseph John Thomson ) ดังนั้นความเชื่อที่เข้าใจกันว่าอะตอมแบ่งแยกอีกไม่ได้ จึงไม่ถูกต้องอีกต่อไป และ ทอมสันได้เสนอแบบจำลองอะตอมขึ้นใหม่ ดังนี้ "อะตอมมีลักษณะเป็นรูปทรงกลมประกอบด้วยอนุภาคที่มีประจุบวก และมีอิเล็กตรอนซึ่งมีประจุไฟฟ้าลบ อะตอมโดยปกติอยู่ในสภาพเป็นกลางทางไฟฟ้า ซึ่งทำให้ทั้งสองประจุนี้มีจำนวนเท่ากันและกระจายอยู่ทั่วไปอย่างสม่ำเสมอภายในอะตอม โดยมีการจัดเรียงที่ทำให้อะตอมมีสภาพเสถียรมากที่สุด" ดังรูป
แต่แบบจำลองอะตอมของทอมสันนี้ยังไม่สามารถอธิบายข้อสงสัยบางอย่างได้ เช่น ประจุไฟฟ้าบวก อยู่กันได้อย่างไรในอะตอม และ ไม่สามารถอธิบายคุณสมบัติอื่นๆของอะตอม ตัวอย่างเช่น สเปกตรัมที่แผ่ออกมาจากธาตุ จึงมีนักวิทยาศาสตร์รุ่นต่อมาค้นคว้าและทดลองเพื่อหาข้อเท็จจริงต่อมา และปัจจุบันก็ได้ทราบว่าแบบจำลองนี้ไม่ถูกต้อง
                                        
แบบจำลองอะตอมของรัทเทอร์ฟอร์ด
เออร์เนสต์ รัทเธอร์ฟอร์ด (Ernest Rutherford) ได้ทำการทดลองยิงอนุภาคแอลฟา ( นิวเคลียสของอะตอมฮีเลียม ) ไปที่แผ่นโลหะบาง ในปี พ.ศ.2449 และพบว่าอนุภาคนี้ สามารถวิ่งผ่านได้เป็นจำนวนมาก แต่จะมีเพียงส่วนน้อยที่เป็นอนุภาคที่กระเจิง ( การที่อนุภาคเบนจากแนวการเคลื่อนที่จากที่เดิมไปยังทิศทางต่างๆกัน ) ไปจากแนวเดิมหรือสะท้อนกลับทางเดิม 
    จากการทดลองนี้ รัทเธอร์ฟอร์ดจึงได้เสนอแบบจำลองอะตอมว่า " อะตอมมีลักษณะโปร่ง ประกอบด้วยประจุไฟฟ้าบวกที่รวมกันอยู่ที่ศูนย์กลางเรียกว่า นิวเคลียส ซึ่งถือว่าเป็นที่รวมของมวลเกือบทั้งหมดของอะตอม โดยมีอิเล็กตรอนเคลื่อนที่รอบๆนิวเคลียสด้วยระยะห่างจากนิวเคลียสมาก เมื่อเทียบกับขนาดของนิวเคลียส และระหว่างนิวเคลียสกับอิเล็กตรอนเป็นที่ว่างเปล่า"
แต่แบบจำลองนี้ยังมีข้อกังขาที่ยังไม่สามารถหาคำตอบได้คือ
1.อิเล็กตรอนที่เคลื่อนที่โดยมีความเร่งจะแผ่คลื่นแม่เหล็กไฟฟ้าออกมา ทำให้พลังงานจลน์ลดลง ทำไมอิเล็กตรอนวิ่งวนรอบนิวเคลียสตามแบบจำลองของรัทเธอร์ฟอร์ด จึงไม่สูญเสียพลังงาน และไปรวมอยู่ที่นิวเคลียส
2. อะตอมที่มีอิเล็กตรอนมากกว่าหนึ่งตัว เมื่อวิ่งวนรอบนิวเคลียสจะจัดการเรียงตัวอย่างไร
3. ประจุบวกที่รวมกันอยู่ในนิวเคลียส จะอยู่กันได้อย่างไร ทั้งๆที่เกิดแรงผลัก





เครดิต  http://th.wikipedia.org
http://www.rmutphysics.com



ไม่มีความคิดเห็น:

แสดงความคิดเห็น